关键词 |
哪里有铜合金焊接,铜合金焊接代加工,黄浦铜合金焊接,铜合金焊接工艺参数 |
面向地区 |
全国 |
众所周知,铜及其合金是一种非常难以焊接的材料,其原因如下:铜及其合金的传导率比较高,造成熔化困难,因此大量的热需要用来补偿热消散和局部进行高度加热,结果形成热应力和终造成变形等缺陷。溶解的氧容易形成氧化物和气孔。对激光束的吸收率比较低,尤其是激光波长为700nm以上的时候,吸收率不到3%。
光束摇摆(振荡)扩大了激光束与材料之间相互作用的面积和焊接宽度,降低了焊接过程中所需要的热输入。在高反射材料中,如铜合金,采用光束振荡,材料的局部温度会升高和提高对激光的吸收率。能量的效率会增加,因为在焊接过程中的反射变少。另外一个主要的优势在于适宜的光束振荡激光头在使用时,可以控制热温度梯度和匙孔的稳定性,这将导致焊接缺陷的减少和获得光滑的焊缝表面。
激光的动态移动可以具有不同的形状,并且其振荡模式的变化可以促进在焊接工艺过程中实现更好的温度管理,从而导致并不陡峭的热输入和冷却速率以及热温度梯度。因此,激光光束振荡可以通过大化的降低焊接缺陷来提高工艺过程,而不会对焊接后的显微组织产生影响,就不会出现以前Kraetzsch所报道的 Cu/Al异种材料的焊接和Wang等人所报道的进行Al焊接时所产生的情况。
光束振荡对焊接工艺产生了积极的影响,这是因为焊接模式从匙孔效应转变为传导焊接模式。没有施加光束振荡的条件下,样品中存在大量的气孔缺陷,飞溅和空穴,导致的原因是匙孔的不稳定性。
铜及铜合金具有的导电性能和导热性能,可进行软钎焊和其他焊接,但由于铜及铜合金的高熔点和极易氧化性能,致使铜及铜合金的焊接存在以下技术难点
(1)高熔点和高导热性,使铜和铜合金焊接温度很高,采用常规焊接工艺参数时, 铜材很难熔化,不能很好地熔合;
(2)焊接接头的热裂倾向大,焊接时,熔池内铜与其中的杂质形成低熔点共晶物, 使铜及铜合金具有明显的热脆性,产生热裂纹;
(3)铜及铜合金焊接易产生气孔的缺陷,且比碳钢严重得多,主要是氢气孔;
(4)焊接接头性能的变化,晶粒粗化,塑性下降,耐蚀性下降等。
对铜合金进行的焊接加工。铜合金的导热率高,焊接时,从焊缝中心向母材迅速散热,焊缝易形成粗大的树枝晶。同时,焊缝内的合金元素、杂质和氧化亚铜与铜形成的低熔点共晶集中分布在晶界上,严重地削弱了晶间结合力,在焊接应力作用下,易产生热裂。因此,大的工件应进行焊前预热,这对焊接缺陷能起到一定的消除作用。高的导热率对于接头形式和熔化焊接技术有特殊要求,只有在热源与焊接接头呈对称位置时,才能获得均匀的焊缝。铜合金液态流动性好,不适于悬空单面对接焊,也不宜采用立焊和仰焊。
在单道对接焊时应采用垫板。常用垫板材料有:铜、石墨和干石棉等。铜合金焊接时吸气较严重,液态时溶解大量氢,在冷却凝固过程中,由于其溶解度降低,氢来不及逸出,在焊缝和熔合区形成气孔。氢还能与氧化亚铜反应生成水泡,形成另一种气孔。铜合金线膨胀系数较大,焊接时,焊件产生较大变形。
黄铜是Cu-Zn合金,根据Zn的含量不同又可分为很多种,为了改变黄铜的性能,也可以加入其它元素,如Al、Ni、Mn等。从而形成了铝黄铜、镍黄铜、锰黄铜等。由Cu-Zn二元系相图可知,黄铜固态下有T、U、V、W、X、Z六个相,其中T相是以铜为基的固溶体,其晶格常数随Zn含量的增加而增大。 Zn在铜中的溶解度与一般合金相反,随温度降低而增加,在456℃时固溶度达大值后, Zn在铜中溶解度随温度的降低而减少。T固溶体具有良好的塑性,可进行冷热加工,并有良好的焊接性能。
铜合金的焊接,主要的问题是裂纹。与铜一样,由于杂质在晶界析出,铜合金也十分容易形成裂纹。在铝青铜中,由于含Al量比较低,所以形成了T单相的焊缝组织,裂纹敏感性比较高,特别是多层焊时,层易出现裂纹。如果提高Al的含量,就会形成T+U的双相组织,可以抑制裂纹的出现,但是Al的含量过高,会在U相中析出V2硬质相,又会使裂纹敏感性增大,所以, Al的含量以7%~ 11%为宜,且要加入一定量的Ni、 Fe、 Mn来抑制V2硬质相的析出。
全国铜合金焊接热销信息
站内来访